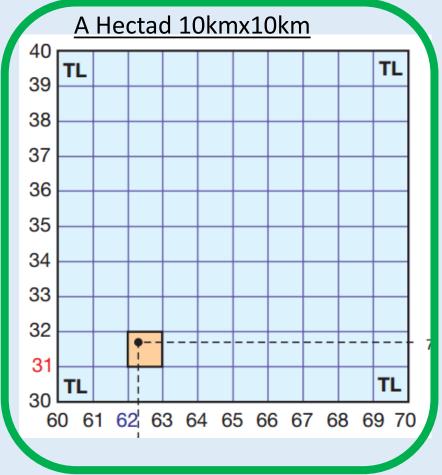
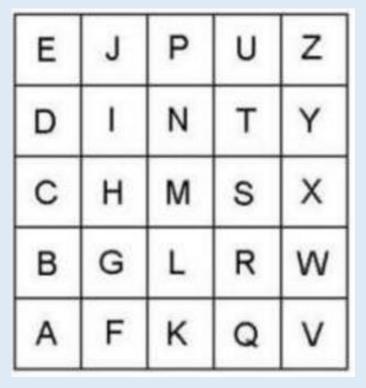
How British flora has changed over the past 30 years

By Chloe Smith & Paul Ashton


Botanical Society of Britain and Ireland Database

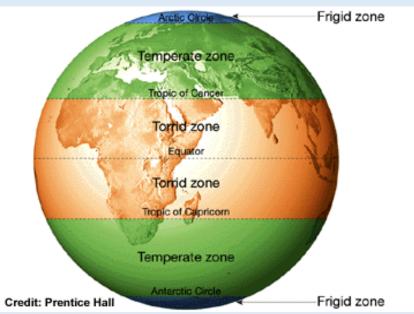
- First atlas published 1962.
- Worlds longest running natural history distribution mapping projects.
- Recordings made by researchers and county recorders.
- Uses Ordnance survey.
- Main resource for my primary data.



OS Grid Reference

				HP (N42)		
			HT (N31)	HU (N41)		
	HW (N10)	HX (N20)	HY (N30)	HZ (N40)		
NA (09)	NB (19)	NC (29)	ND (39)			
NF (08)	NG (18)	NH (28)	NJ (38)	NK (48)		
NL (07)	NM (17)	NN (27)	NO (37)			
	NR (16)	NS (26)	NT (36)	NU (46)		
	NW (15)	NX (25)	NY (35)	NZ (45)		
		SC (24)	SD (34)	SE (44)	TA (54)	
		SH (23)	SJ (33)	SK (43)	TF (53)	TG (63)
	SM (12)	SN (22)	SO (32)	SP (42)	TL (52)	TM (62)
	SR (11)	SS (21)	ST (31)	SU (41)	TQ (51)	TR (61)
SV (00)	SW (10)	SX (20)	SY (30)	SZ (40)	TV (50)	

Dinty system for tetrads



TL 63

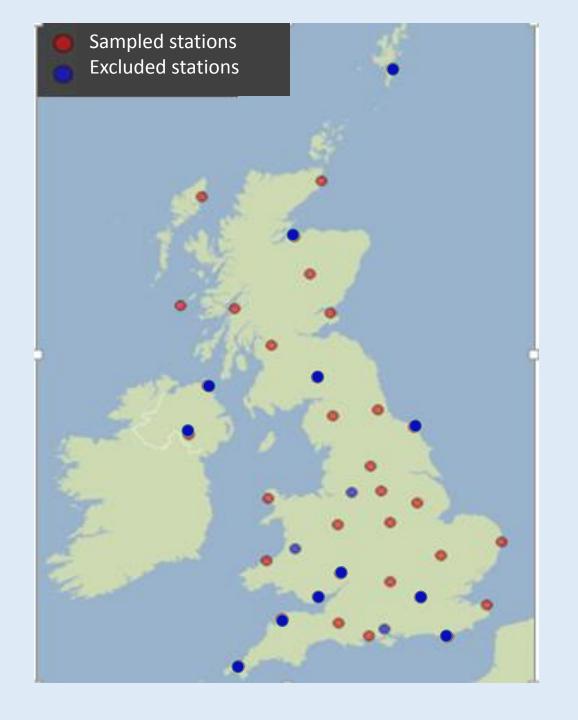
The Carex genus

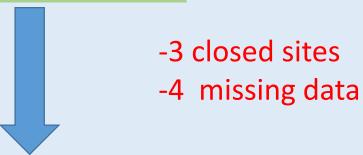
- Highly diverse
- Most abundant genus of plant in the UK
- Breaks the rule of latitudinal diversity gradient.
- Useful habitat indicator

Research questions

from 1974-2014....

- 1. Has there been a change in species abundance, richness or diversity?
 - 2. Are certain habitats more susceptible to this change?
 - 3. And could this change be caused by climate change?


Site Selection


Total of 37 Met office historical weather station sites.

Criteria for sampling:

- 1. Has a full set of climatic records from December 1973 to January 2015.
- 2. The hectad the station is contained within has *Carex* species recorded both periods sampled.

37 historical stations

30 historical stations

-8 hectads with no *Carex* species

22 historical site

Grid reference and habitat type

	name of site	lat/long	masl	coastal/non	OS ref	urban/rural
1	Aberorth	52.139, -4.570	133	coastal	SN 24221 52083	rural
2	Armagh	54.352, -6.649	62	non	NV 98032 05131	urban
3	Ballypatrick Forest	55.181, -6.153	156	coastal	NW 35707 95285	rural
4	Bradford	53.813, -1.772	134	non	SE 15110 35215	urban

Met Office Data

- Latitude/longitude = OS grid ref
- metres above sea (above 150/ below 150)

Satellite maps

Coastal/ Non-coastal and Rural/Urban

Species Data collection

	А	В	С	D	Е	F	G	Н	I	J
1	taxon	brccode	ddb id	validation	record sta	external i	recorder	determine	compiler	vc
2	Carex demissa	Vas_361	2cd4p9h.c	unclassifie	unknown		Lockton, A	A.;Whild, S.	•	1
3	Carex leporina	Vas_397	2cd4p9h.c	unclassifie	unknown		Whild, S.;	Lockton, A	•	1
4	Carex nigra	Vas_393	2cd4p9h.c	unclassifie	unknown		Whild, S.;	Lockton, A	•	1
5	Carex demissa	Vas_361	2cd4p9h.c	unclassifie	unknown		Whild, S.;	Lockton, A	•	1
6	Carex echinata	Vas_370	2cd4p9h.c	unclassifie	unknown		Lockton, A	A.;Whild, S.		1
7	Carex flacca	Vas_376	2cd4p9h.c	unclassifie	unknown		Whild, S.;	Lockton, A		1
8	Carex leporina	Vas_397	2cd4p9h.c	unclassifie	unknown		Whild, S.;	Lockton, A		1
9	Carex echinata	Vas_370	2cd4p9h.c	unclassifie	unknown		Whild, S.;	Lockton, A	•	1

How were variables measured?

Data was mined from sources for both the 'early' (1974-1984) period to the 'late' (2004-2014) period and compared.

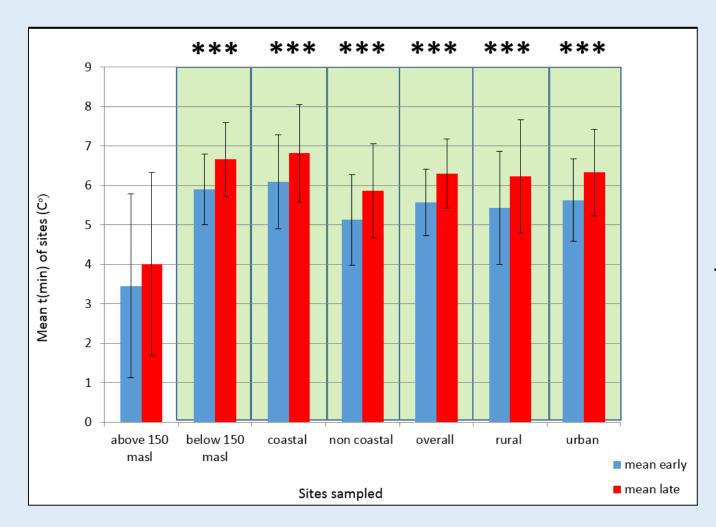
Temperature

Mean t(min) for each hectad at each time period

<u>Abundance</u>

Measured by number of recorded *Carex* individuals in a hectad within 'early' or 'late' period <u>Winner and loser species</u>

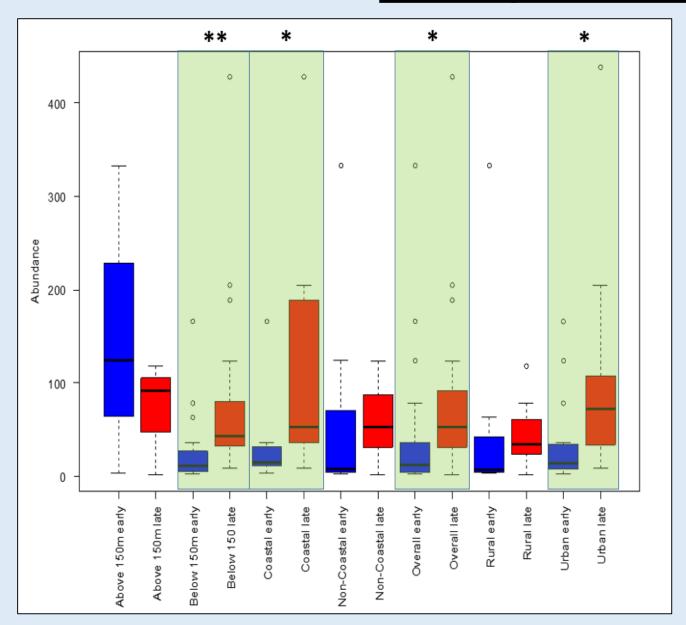
If each species gained or lost numbers from the 'early' period to the 'late' period.


<u>Richness</u>

Number of Carex species recorded in each hectad within 'early' or 'late' period

Diversity

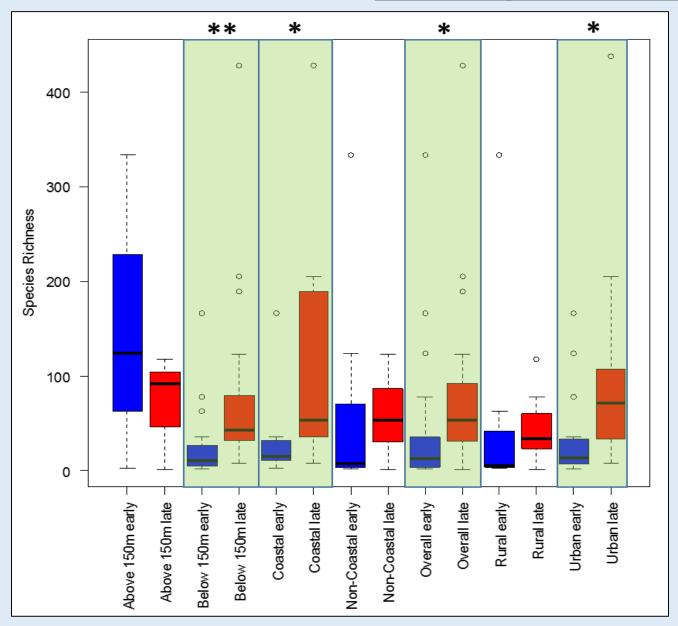
Using Shannon's diversity index


Ch Resultsmin)

Highlighted bars = significant change. "***" represents a p-value<0.001

Using a paired t test all categories of habitat found to be highly significant apart from sites above 150 m.a.s.l.

Change in Abundance

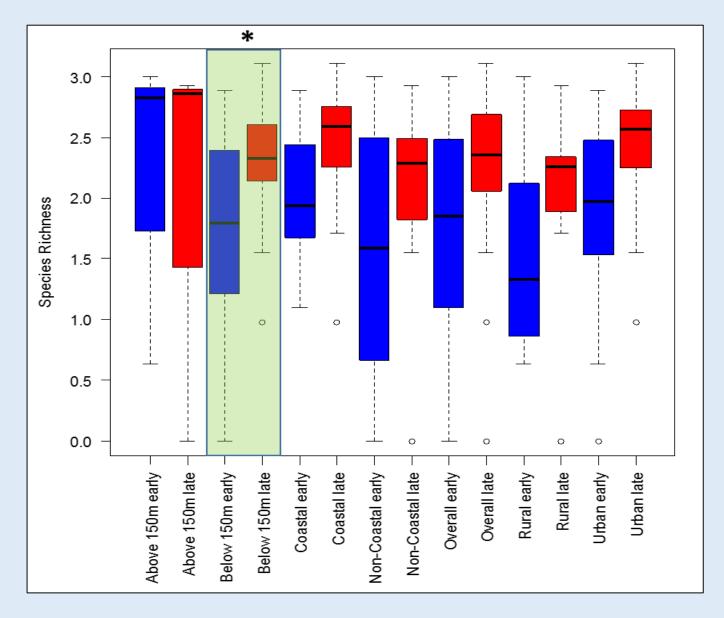


- * =P value<0.05
- ** = P value<0.01

Significant change from the early to late period in:

- Overall
- Below 150 m.a.s.l
- Coastal
- Urban

Change in Richness


- * =P value<0.05
- ** = P value<0.01

Significant change from the early to late period in:

- Overall
- Below 150 m.a.s.l
- Coastal
- Urban

Change in Diversity

* =P value<0.05

Only sites below 150 m.a.s.l showed any significant change in diversity.

Results Summary

<u>Variables</u>	Change in	Change in	Change in	Change in
<u>tested</u>	<u>temperature</u>	<u>abundance</u>	<u>richness</u>	<u>diversity</u>
<u>Habitat</u>				
<u>Above</u>	NS	NS	NS	NS
150m.a.s.l				
<u>Below</u>	***	**	**	*
150ma.s.l				
<u>Coastal</u>	***	*	*	NS
Non-Coastal	***	NS	NS	NS
<u>Overall</u>	***	*	*	NS
Rural	***	NS	NS	NS
<u>Urban</u>	***	*	*	NS

Discussion

- Consistent change in the averaged t(min) with Dušek et al.,(2013).
- •Sites above 150m asl may not have as much direct stress from climate change but migration of flora may make these habitats vulnerable still.
- Species that increased the most in abundance are those that are known to be widespread. This could indicate an increase in recorder intensity.
- Could the *Carex* genus actually 'benefit' from temperature increase?

Limitations of Data

- 1. No indication of recorder intensity.
 - 2020 Atlas
 - Sedges of the British Isle.
 - Popular sampling sites
- 2. Suitability of the classification of sites
- 3. Sites are not mutually exclusive from category to category.
- 4. Temperature database ability Vs. Sufficient sampling.
- 5. Complex hydrology system changes could be having an effect.

Acknowledgments

Thank you to the Edge Hill Biology staff, Anne Oxbrough, Mary Dean.

chloe.smith4@go.edgehill.ac.uk

References

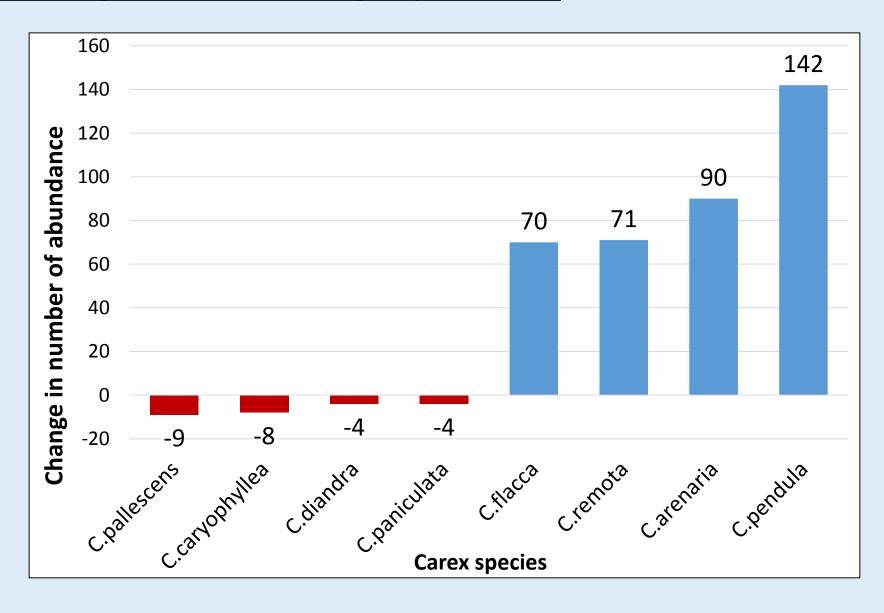
Barry,P,J., Baxter,H,C., Sagarin,D., Gilman,E,S. (1995). Climate-Related, Long-Term Faunal Changes in a California Rocky Intertidal Community. *Science*. 267 (1), 172-175.

Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., Courchamp, F. (2012). Impacts of climate change on the future of biodiversity. *Ecology Letters*. 15 (4), 365-377.

Farnsworth, M, L., Nimmo, G, D., Kelly, T, L., Bennett, F, A., Clarke, F, M. (2014) Does pyrodiversity beget alpha, beta or gamma diversity? A case study using reptiles from semi-arid Australia. *Diversity & distributions*. 20(6), 663-673. DOI: 10.1111/ddi.12181

Henrys, A, P., Stevens, J, C., Smart, M, S., Maskell, C, L., Walker, J, K., Preston, D, C., Crowe, A Rowe, E., Gowing, J, D., Emmett, A, B. (2011) Nitrogen impacts on vascular plants in Britain: an analysis of two national observation networks. *Biogeosciences Discussions*. 8,7441–7474. DOI: :10.5194/bgd-8-7441-2011

Hill,O,M. and Preston,D,C. Disappearance of boreal plants in southern Britain: habitat loss or climate change? (2015). *Biological Journal of the Linnean Society.* 115 (3), 598–610. DOI: 10.1111/bij.12500.


Hillebrand, H. (2004) On the generality of the latitudinal diversity gradient. *American Naturalist*. 163 (2), 192-211. DOI: 0.1086/381004

Jepson, P., Lubienski, M., Ilewwllyn, P., Viane, R. (2013) Hybrids within Equisetum subgenus Hippochaete in England and Wales. *New Journal of Botany*. 3(1), 47-58.

Larkin, J, D., Hipp, L, A., Kattage, J., Prescott, W., Tonietto, K, R., Jacobi, K, S., Bowles, L, M. (2015) Phylogenetic measures of plant communities show long-term change and impacts of fire management in tallgrass prairie remnants. *Journal of Ecology*.

www.gov.com (2015) www.metoffice.co.uk (2015) www.bsbidb.org.uk (2015)

Winning and losing species

